Dependable 3D Recognition and Modeling for Visually Guided Robotic Manipulation and Navigation

*Sukhan Lee, Jeihun Lee, Seung-Min Baek, Dongju Moon, Woong-Myung Kim, and Changhyun Choi

Intelligent Systems Research Center
School of Information and Communication Engineering
Sungkyunkwan University, Suwon, KOREA
{lsh, jeihun81}@ece.skku.ac.kr

Abstract — To realize service robots with the capability of visually guided human-like manipulation in an unstructured environment cluttered with various daily life objects, it is crucial to guarantee dependability in visual perception. In order to solve such critical issues as robustness and real-time processing in vision based 3D recognition and pose estimation, we present a novel vision-based framework designed under the concept of "behavioral perception." In particular, this paper presents a particle filter based probabilistic method for recognizing an object and estimating its pose based on a sequence of images. The proposed method allows an easy integration of multiple evidences such as photometric and geometric features as SIFT, color, 3D line, 2D square, etc. The experimental results with a single stereo camera show the feasibility and effectiveness of the proposed method in an environment containing both textured and texture-less objects.

I. INTRODUCTION

Dependability in perception or, in particular, vision, plays a critical role for the overall dependability of a robot engaged in autonomous manipulation and navigation. This is especially so when an extended autonomy is pursued for a service robot with a human-like perception-action paradigm. For successful implementation of a perception-action paradigm, it is crucial to have a means of effective yet reliable perceptual anchoring, such as the capability of object/environment recognition and modeling in natural surroundings as well as the capability of automatically compensating for an unexpected error in action based on perception guided servo. Note that effective and reliable perceptual anchoring implies a solution for seamlessly connecting the two well established technical disciplines: the numerical control of robot motions and the symbolic AI logics for task planning, resulting in avoiding the, so called, brittleness of robot intelligence.

In this paper, we present a novel vision-based framework for the recognition, pose estimation, and modeling of 3D object/environment that guarantees the dependability required by a given task. Introduced here is the concept of "behavioral perception," where a robot is subject to proactive selection and collection of an optimal set of evidences in-situ that are sufficient enough for reliable visual decision. The "behavioral perception" proposed here is implemented over the spatial-temporal fusion and filtering paradigm as a means of integrating the multiple evidences selected and collected in space and time and the model stored in the robot database. A special focus is given to the robust visual recognition and pose-estimation of 3D objects in noisy and visually not-so-friendly environments due to textures, occlusions, illuminations, and camera poses. In other words, the robustness in recognition and pose estimation is achieved by behavioral perception where an optimal set of multiple evidences is selected and collected in-situ and is matched against the given model based on a sequence of images obtained from robot motion.

In particular, this paper presents a particle filter based probabilistic method for recognizing an object and estimating its pose based on a sequence of images, where the probability distribution of object pose in 3D space is represented by particles. The particles are updated by consecutive observations in a sequence of images and are converged to a single pose. The proposed method allows an easy integration of multiple evidences such as photometric and geometric features as SIFT, color, 3D line, 2D square, etc. The integration of multiple evidences, including photometric and geometric features, in space and time makes the proposed method robust to various not-so-friendly visual environments.

This multiple evidence and model matching process continues till the certainty of recognition and pose estimation, accumulated by particle filtering, reaches sufficiently high enough for credible decision. The experimental results with a single stereo camera show the validity of the proposed method in an environment containing both textured and texture-less objects.

II. ISSUES OF 3D RECOGNITION

The object recognition has been one of the major problems in computer vision and intensively investigated for several decades. Although to recognize object have some problems, it has been developed toward real complex objects in cluttered scenes. There are several approaches to solve the problems of object recognition in human environment.

One of the common approach for recognizing object is model based recognition method. It recognizes the objects by matching features extracted from the scene with stored features of the object [1][2][3]. There are
several methods to recognize object using predefined model information.

The method proposed by Fischler and Bolles [4] uses RANSAC to recognize objects. It projects points of all models on the scene and determines if projected points are close to those of detected scene and recognizes the object through this. This method isn’t so efficient because of long processing time for hypothesis and verification tasks. Olson [5] proposed pose clustering method for object recognition. This method recognizes object by producing pose space discretely and finding cluster including the object to search. As for disadvantages of this method, data size is quite big because pose space is 6-dimentional and pose cluster can be detected only when sufficient accurate pose is generated. In the next, David et al. [6] proposed recognition method that matching and pose estimation are solved simultaneously by minimizing energy function. But it may not be converged to minimum value in functional minimization method due to high non-linearity of cost function.

In addition, Johnson and Herbert [7] proposed a spin image based recognition algorithm in cluttered 3D scenes and Andrea Frome et al. [8] compared the performance of 3D shape context with spin-image. Jean Ponce et al. [9] introduced the 3D object recognition approach using affine invariant patches. Most recently, several authors have proposed the use of descriptor in image patch [10].

Another approach to recognition of object is local shape features based method which is inspired by the shape contexts of Belongie et al. [11]. At each edge pixel in an image, a histogram, or “shape context,” is calculated then each bin in the histogram counts the number of edge pixels in a neighborhood near the pixel. Nearest neighbor search and histogram distance measures then determine correspondences between shape contexts from a test image and shape contexts from model images [12]. But this method may not be effective when the background is concerned. To solve this problem, assessing shape context matching in high cluttered scene have studied [13] recently.

Except for above method, there are many of object recognition research. However, most of these methods are working well only at the condition with accurate 3D data or fully textured environments in single scene information with limited feature.

Fig. 1 shows 2D images and 3D point clouds captured by a single stereo camera in various environmental conditions. If the object is close enough to recognize it, illumination is bright enough, and texture condition of object and environment is good as shown Fig. 1 (a), then we can get enough number of 3D points for recognition and pose estimation. However, in general, real environmental situation is not as perfect as Fig. 1 (a). If a robot is far from the object, the size of object in 2D image is too small to recognize it and depth measurement error will be larger. (Fig. 1 (b)) If object or environment don’t have enough textures, we cannot get enough number of 3D points for recognition. (Fig. 1 (c)) Illumination condition is very critical for recognition also. (Fig. 1 (d))

Moreover, these environmental conditions varying continuously, so a 3D recognition method working well in fixed condition cannot guarantee the performance in real human environment.

In this paper, we try to solve this problem of 3D recognition in real environment by using probabilistic method based on a sequence of images with multiple features.

The reminder of this paper is organized as follows : Section III outlines proposed framework for object recognition and its pose estimation. Section IV describes our experiments for emphasizing advantage of our proposed framework. Section V concludes by discussing scalability and implementation issues along with directions for future works.
III. PROPOSED SOLUTION: BEHAVIORAL PERCEPTION FRAMEWORK

A. Outline of proposed Approach

In the object recognition literature some of probabilistic approaches to object recognition or pose estimation have been reported [15][16][17]. The works of [17] and [18] use maximum a posteriori (MAP) estimation under a Markov random field (MRF) model. Especially the former uses MRF as a probabilistic model to capture dependencies between features of the object model and employs MAP estimation to find the match between the object and scene. Schiele and Crowley [19] have developed a probabilistic object recognition technique using multidimensional receptive field histograms. Although this technique has been shown to be somewhat robust in the face of change in rotation and scale with low cost of computation, it only computes the probability of the presence of an object.

The main contribution of this paper is to develop a probabilistic method based on a sequence of images to recognize an object and to estimate its pose. The proposed method handles the object pose probabilistically. The probabilistic pose is drawn by particles and is updated by consecutive observations extracted from a sequence of images. The proposed method can recognize not only textured but also texture-less objects because the particle filtering framework of the proposed method can deal with various features such as photometric features (SIFT-Scale Invariant Feature Transform [10], color) and geometric features (line, square) [14].

B. In-situ Monitoring

The main role of In-situ Monitoring is simply to check the changes of environment such as illumination, a mount of texture and distance of between robot and assumed object. In this paper, we divide uniformly input image into 25 areas, 5 columns and 5 rows, and calculated values are used for selection of valid feature or feature set. The illumination means intensity information in current image that calculates not absolute value but relative such as changes of environment. A mount of texture in each block is counted pixel which is processed by Canny edge image of current frame. Lastly, we assume that existence possibility of object is high if a mount of texture is abundant in particular block. So distance of each block is calculated using processed image pixel with valid 3D point cloud and average those values.

C. Cognitive Perception Engine

We are currently developing the CPE. We assume that the valid features for each object in a current scene are already defined to the CPE. The multiple poses are generated by features extracted from a scene and 3D point cloud. These poses are used for making observation likelihood. The particles representing the object pose are propagated from the previous state using the motion information. The weights are assigned to the predicted particles. Finally, we resample the particles according to their weights for obtaining important particles. These procedures are repeated until the particles are converged to a single pose.

D. Particle Filtering Framework

Basically, Particle Filtering Framework is almost same as mentioned in [20]. The recognized object pose is estimated by particle filtering in a sequence of images over time in order that we represent the object pose with an arbitrary distribution. We keep a formulation of Motion model and Observation model in [20] which is most important parts in proposed particle filter based framework.

![Flow chart of the proposed method](image-url)
But similarity assignment of Observation model is not only very heuristic but also so experimental in the previous research. In this paper, we improved it using Bayesian theorem and probabilistic approach.

1) Observation Likelihood

We define the observation likelihood \(p(Z_t | O^{[i]}_t) \) in previous work [20]:

\[
p(Z_t | O^{[i]}_t) = \sum_{j=1}^{m} w_j \exp \left[-0.5 \times \sum_{l=1}^{4} \left(\frac{(\text{Ob}_{TPj} - \text{St}_{TPj})^T}{\sum_{j} \text{Ob}_{TPj} - \text{St}_{TPj}} \right) \right]
\]

Where \(w_j \) is the similarity weight related to transformed points with \(O^{[i]}_t \). Where \(m \) is the number of generated its poses at time \(t \). Here, we designate four points (P1, P2, P3, P4) at camera frame as Fig. 3. The four points are transformed by the homogeneous transform matrix parameterized by the six spatial degrees of freedom. Fig. 3 (b) shows the transformed points (TP1, TP2, TP3, TP4) with an arbitrary homogeneous transform matrix. We obtain the set of the four points (TP1, TP2, TP3, TP4) transformed from (P1, P2, P3, P4). Let \((\text{Ob}_{TP1[i]}, \text{Ob}_{TP2[i]}, \text{Ob}_{TP2[i]}, \text{Ob}_{TP2[i]}) \) represent the transformed points with \(O^{[i]}_t \) while \((\text{St}_{TP1[i]}, \text{St}_{TP2[i]}, \text{St}_{TP2[i]}, \text{St}_{TP2[i]}) \) mean those with \(O^{[j]}_t \).

![Fig. 3. The designated four points for making the observation likelihood](image)

2) Similarity Assignment

To assign similarity, we consider how much correspondence between the recognized object and its estimated pose and real ones, respectively. In probabilistic terms the goal of proposed method is to estimate object pose which yield the best interpretation of object pose generated by multiple features in Bayesian sense. Our particle filter based probabilistic method framework approximate variant of the following posterior distribution.

\[
w_j = p(O_{\text{object}} | E) = p(O_{\text{real}}, O_{\text{pose}} | E)
\]

Where \(O_{\text{object}} \) is an object to recognize, it is divided \(O_{\text{real}} \) and \(O_{\text{pose}} \) for information of recognition and pose estimation respectively. The \(O_{\text{real}} \) means whether recognized object is correct or not and \(O_{\text{pose}} \) means precision level of estimated object pose. Where \(E \) denote the evidence, measurement, redefined \(E = \{Z_1, Z_2 \ldots Z_s\} \) indicates multiple features.

In other words, the \(O_{\text{real}} \) means a process of object recognition whether it is the aimed object to recognize or not. The \(O_{\text{pose}} \) is generated by accuracy rate of estimated object pose. To represent similarity weight, we assume that \(O_{\text{real}} \) and \(O_{\text{pose}} \) are independent events because object identification is considered separately as pose estimation. That means that the very well recognized object does not guarantee accurate estimation of object pose, vice versa. According to this assumption, the similarity is represented as follow:

\[
p(O_{\text{real}}, O_{\text{pose}} | E) = p(O_{\text{real}} | E)p(O_{\text{pose}} | E)
\]

3) Resampling

Detail method will be mentioned next paragraph, because the similarity calculation of each evidence is quite different. Resample process of particles is also same method in [20].

E. Object Matching Similarity From Features

1) Similarity assignment from SIFT feature

The object pose can be generated by calculating a transformation between the SIFT features [14] measured at current frame and the corresponding ones in the database. The transformation is represented by a homogeneous transform matrix. The object pose can be generated using corresponded 3D point clouds from depth image if the matched features are 3 or more in 2D image [20].

If one scene has several candidates that have matched SIFT features, then all these candidates generate 3D poses for probabilistic fusion at particle filtering stage, as described in previous section. However, to assign similarity weight to each candidate, posterior distribution should be calculated in equation (2).

For example, when an object is shown in the scene, measured average number of matched SIFT is 23 as \(p(O_{\text{real}} | E_{\text{SIFT}}) \), and average distance error is 5mm with certain variation by many trials as \(p(O_{\text{pose}} | E_{\text{SIFT}}) \). Then, the posterior distribution \(p(O_{\text{real}}, E_{\text{SIFT}}) \) can be
obtained by equation (3), and the shape of probability distribution of example case is shown in Fig. 4.

2) Similarity assignment from line feature
Assigning similarity method of Line feature is conducted the same process with SIFT. But there are two kinds of hypothesis about object identification, \(p(O_{i,j} \mid E_{Line}) \) and pose accuracy, \(p(O_{i,j} \mid E_{Pose}) \). We define first one as a Coverage that means how many matched line with information of model line. The Coverage can be calculated by equation (4) as follow:

\[
Coverage = \frac{\text{Matched line distance}}{\text{Total line distance of model}}
\]

(4)

If the Coverage is very high, then the probability of object identification is increased. And the second one is defined as ICP matching error, because we use ICP for line matching. Line matching can find several matched set like SIFT in the single scene. So, \(p(O_{i,j} \mid E_{Line}) \) can be obtained by equation (3) in each candidate and is represented as a joint probabilistic in Fig. 5.

3) Similarity assignment from color information
The object with a particular color can be segmented by the color in the current scene. Although the segmented region can not provide an object’s orientation, the object’s location can be generated using the segmented region from corresponded depth image. In homogeneous transform matrix, the rotation part is defined by an identity matrix and the translation part represents an object’s location as a center of segmented area. Information of translation matrix can be approximated average of valid 3D points in segmented area. If there is no valid point in segmented area, it is not assigned similarity. The similarity weight for \(j \)th object location, \(w_j \), is denoted as a predefined constant with a small value in comparison with the similarity weight of the object pose generated by the other features. In particular, the color information can be combined with the other features.

IV. EXPERIMENTAL RESULTS
This paper focuses on recognizing an object while estimating its pose concurrently in a sequence of images. The proposed method is tested for recognizing textured and texture-less objects. The robot used in the experimentation is a PowerBot–AGV with a Videre stereo camera mounted on the pan-tile unit configuration as is seen Fig. 6. The camera motion information is calculated by the internal encoder.

For our experiments, we decorated clustered environment as Fig. 7(a), and used illuminometer Fig. 7(b) for measuring change of illumination in environment. Our aimed object to recognize is like rectangular parallelepiped, red circled blue book in Fig. 7(a), which has textured front side and texture-less back side. To emphasize advantages of proposed framework, the experiment is conducted various conditions in accordance with changes of illumination, amount of texture and distance. First experiment is conducted as recognizing textured object, front side of the book, with changing illumination, 330 lx and 120 lx, and distances of recognition, about 0.5 meters, 1.0 meters and 1.6 meters and its result illustrates in Fig. 8. We turn front side of the book back in order to carry out second experiment, Fig. 9, recognizing the texture-less side of the target object.
We make CPE strategy with 3 evidences and its combination. It means that the recognition and pose estimation of 3D object are performed Color, Line, SIFT, Color with Line and Color with SIFT features. These features are selected automatically in accordance with illumination and distance by CPE in the proposed framework. CPE selects SIFT in the close distance to object and bright environment. If the distance is far, CPE use Color with SIFT, Line feature or Color with Line features for object recognition and its pose estimation. On the other hand, if the distance information from in-situ monitor is over the 1.0 meters, Line or Color Line feature are selected by CPE in dark environment.

Fig. 8 and Fig. 9 show that the each evidence - Color, Line and SIFT – has such different characteristic as accuracy, effective distance and illumination for recognition. Color feature have the advantage for changes of not only illumination and distance but also detected number of 3D point clouds. But Color feature cannot estimate object pose because it cannot identify the object. Therefore, variance of Color feature is much wider than others. Line feature has a good performance for recognition and its pose estimation with small variance. But it sometimes mismatch between real object and similar ones because it do not have identification ability of object. Whereas other evidences, SIFT feature has very good performance to identify object. So pose estimation combined with 3D point cloud from high precision sensor is very accurate. The results from our experiments in Fig. 8 and Fig. 9 show correctness of recognition and pose estimation, despite low precision and changeable depth information of stereo camera.

But some conditions such as far distance and low illumination are the fact that should be overcome in order to improve the recognition performance. The further robot is from the object, the wider variances are in the result of Color and Line features, Fig. 8 and Fig. 9. In dark environment is also challenging in recognition problem. Note that SIFT method cannot recognize target object when robot is far from object and in low illuminated place in Fig. 8(b) and Fig. 9(b).

The results from CPE have good performance in any circumstance. Automatically selected optimal feature or features set are properly achieved according to purpose of proposed framework. The estimated pose is approximated near the real with narrow variances in all cases. In some cases, CPE results better than SIFT.

Table 1 shows the experimental results of object recognition that is performed according to changes of distance and amount of texture in fixed brightness environment. Cross marked cells means that target object can not be recognized using selected feature set in that situation because of not enough information. And slashed cells means that the object can be recognized using selected feature set with large error.
In this table, selected feature set by CPE, proposed method, in accordance with changes of environment is represented as shaded cells. Each light gray one is a selected feature set in large amount of texture case, whereas dark cell is not enough amount of texture case. Especially, the combined feature, either Color+Line or Color+SIFT, is more frequently used to recognize object than others because our target object is blue color book that means color is important information to recognize in this experiment. Note that we can check the results of selected feature set by CPE that have relatively small variances in estimation of the object pose.

V. CONCLUSION

This paper presents a particle filter based probabilistic method for recognizing an object and estimating its pose based on a sequence of images, where the probability distribution of object pose in 3D space is represented by particles. The proposed method can be applicable to 3D recognition in an unstructured environment cluttered with various daily life objects because it can incorporate easily multiple features such as photometric features (SIFT, color) and geometric features (line, square) into the proposed filtering framework. The experimental results with a single stereo camera showed the feasibility and effectiveness of the proposed method under various environmental conditions.

ACKNOWLEDGMENT

This work is supported by the Intelligent Robotics Program, one of the 21st Century Frontier R&D Programs funded by the Ministry of Commerce, Industry and Energy of Korea. This work is also supported in part by the Science and Technology Program of Gyeonggi Province as well as in part by the Sungkyunkwan University. And this work was also partly supported by Brain Korea 21 (BK21) project.

TABLE I

<table>
<thead>
<tr>
<th>Feature</th>
<th>Distance (meter)</th>
<th>0.5</th>
<th>1.0</th>
<th>1.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>SIFT</td>
<td>0.50</td>
<td>0.48</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>0.46</td>
<td>0.50</td>
<td>0.99</td>
<td>1.44</td>
</tr>
<tr>
<td>Line</td>
<td>0.39</td>
<td>0.44</td>
<td>1.04</td>
<td>1.68</td>
</tr>
<tr>
<td>Color+SIFT</td>
<td>0.47</td>
<td>0.45</td>
<td>0.94</td>
<td>0.98</td>
</tr>
</tbody>
</table>

REFERENCES

