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Abstract— In this paper, we present a new method for
decoding pixel correspondences in structured light based 3D
reconstruction, refer to here as Ray-Tracing codec. The key
idea of Ray-Tracing codec is to correctly define the region
boundaries in real number, for each layer of the Hierarchical
Orthogonal Code (HOC) based on an accurate boundary
estimator, and to inherit the correct region boundaries between
layers sharing common boundaries. Furthermore, each region
in lower layer is traced back to the upper layer for the
correct correspondence between regions. This is an improve-
ment over existing HOC decoding algorithms as the wrong
decoded pixel correspondences can be greatly reduced. The
experimental results have shown that the proposed Ray-Tracing
codec significantly enhances the robustness and precision in
depth imaging, compare with HOC and other well-known
conventional approach. The proposed approach opens a greater
feasibility of applying structured light based depth imaging to
a 3D modeling of cluttered workspace for home service robots.

I. INTRODUCTION

Depth imaging based on structured light has drawn much
attention due to its potential for applications in many areas
such as robotics, 3D games, precision measurements, etc.
Recently, many robots are equipped with a structured light
based imaging system instead of traditional passive stereo
cameras for object recognition and manipulation in short
range, some well-known robots are PR2 [1], TurtleBot [2]
and T-Rot [3], etc. This potential is mainly from its capability
of measuring depth of textureless objects and also providing
higher precision and robustness than passive stereo cameras
as well as higher speed and lower cost than laser scanners.
The key technology for depth imaging based on structured
light lies in the methodology of achieving correct pixel
correspondence between DMD (Digital Mirror Device) of
a projector and a camera. The accuracy of depth imaging
depends directly on the correctness of pixel correspondence.

There are many approaches [4][5] to code light patterns
available to date, and they can be classified in to three
classes: temporal patterns, spatial patterns and mixed forms.
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The spatial patterns have a small number of projected pat-
terns that can cope with moving scenarios, their weakness is
the low accuracy in 3D data. The temporal patterns have a
large number of projected patterns which make them unable
to deal with moving scenarios, but they have a very accurate
measurement of 3D data. This paper focuses on improving
the robustness and precision in depth imaging using temporal
patterns based on binary codes.

In the techniques based on binary codes, only two illumi-
nation levels are used, which are coded as 0 and 1, and Gray
code is widely used to code the pattern. Posdamer et al. [6]
were the first to propose a well known effective technique
using plain binary coded temporal patterns. Knowing the
sensitivity of plain binary code against noise, Inokuchi et
al. [7] improved the codification scheme of Posdamer by
using Gray code, which is more robust against noise, instead
of plain binary. Later, Trobina [8] presented an error model
of coded light range sensors based on Gray coded patterns,
and demonstrated the importance of accurately locating every
stripe in the image. The author proposed two ways of
detecting stripe edges with sub-pixel: the first way is to
project the reference images (all white and all black) then
use the average value as the threshold to determine stripe
edge location; an alternative way is to project the additional
inverse pattern and find intersection of both profiles, where
stripe edge is located.

Some works have been done in order to improve Gray
coded patterns. Guhring [9] used Gray code for labeling the
code-strings coarsely, and several lines instead of the final
few frames to determine the final code-strings. This makes
the results more dense and accurate than the Gray code. Kim
et al. [10] developed an antipodal Gray code for structured
light and showed that the antipodal Gray code provides more
robust and accurate results than original Gray code. Sansoni
[11] and Wiora [12] combined phase-shift with Gray code
patterns to get high-resolution 3D reconstruction.

However, these conventional approaches suffer either from
large pixel-wise variations in accuracy or from a number
of spurious outliers, especially, near occluding and shading
boundaries. This is because the conventional approaches
focus on decoding the input signals based only on the
intensity values of the pixels at the position to be decoded. It
is problematic in decoding the pixel correspondences when
the signals are corrupted by system and environmental noise,
due to scattering, variation in reflectance and illumination,
particularly when the light source is relatively weak.

In this paper, we employ a previously developed structured
light pattern, Hierarchical Orthogonal Code [13], and pro-
pose a new decoding method to overcome those weaknesses
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Fig. 1: Hierarchical Layer of Code. Each layer consists of 4 patterns,
each code in upper layer is divided in to 4 sub-codes in lower layer.

of the conventional method as well as improve the precision
in depth imaging. Unlike the conventional approaches, the
proposed approach decodes the pixel correspondences based
on the regions and inherits the correspondence information
of regions from upper layer to lower layer: First the pattern
stripe boundaries are accurately estimated; the boundaries of
shadow in camera view as well as in projector view are also
estimated. Then in each layer, the regions between bound-
aries are defined, also their correspondences are determined.
Finally, each region in lower layer is traced back to the
containing region in upper layer to inherit the correspondence
information, thus the correspondence of the current region is
correctly updated.

The remainder of the paper is organized as follows: In
Section II, we describe our Ray-Tracing codec. The exper-
imental results are provided in Section III. Finally, Section
IV concludes the paper.

II. THE PROPOSED METHOD

A. Structured Light Pattern

In previous work [13], we developed a structured light
pattern named as ”HOC (Hierarchical Orthogonal Coding)”,
in which the orthogonal codes are arranged hierarchically in
order to reduce the length of codes. The length f of code
signals divided into a few layers L and each layer includes
H orthogonal codes recursively as shown in Fig. 1. Although
the signal codes in the HOC are not orthogonal, each layer
has a set of orthogonal codes. For more details, please refer
[13].

For example, we assume that a HOC has four layers (L =
4) and the number of orthogonal codes in each layer is also
four (H1 = H2 = H3 = H4 = 4). In this case, the total
number of signal codes is 256 (H1×H2 ×H3×H4 = 256)
and the code length is 16 (H1 +H2 +H3 +H4 = 16), i.e.
we need 16 frames of camera image for decoding addresses
of the signals.

The decoding process of HOC patterns is as follows (as
illustrated in Fig. 2). At the i-th pixel position, in each
layer we have a set of pixel intensity yi = (I1, I2, I3, I4)T

from four patterns. The signals are separated by multiplying
yi with an orthogonal matrix: ci = Xyi, then selecting a
probable code for ci. Repeating for all layers, we have a set
of probable codes, and then decode the correct address.
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Fig. 2: A conceptual description of an HOC based signal decoding
process which is including (a) a signal of pixel values at i-th
position, (b) signal separating by multiplying an orthogonal matrix,
(c) selecting a set of probable codes, and (d) decoding of the correct
address.

However, this decoding method is sensitive to variation
of surface reflectance, especially at the boundaries of the
patterns; and not accurate enough in depth measurement
since the true boundaries of the light stripes cannot be
located. In following sections, we describe a new decoding
method for HOC patterns which is robust to variation of
surface reflectance (by a top-down approach with region
based correspondence) and accurate in depth measurement
(by accurately estimate the stripe boundaries).

B. Structured Light Pattern Decoding Method

1) Accurate Stripe Boundary Estimation: Accurately es-
timating the stripe boundary is crucial issue in improving
depth measurement of structured light 3D camera systems.
Since the projector correspondence is computed regarding
the boundaries of light stripes on the camera images.

Here we adopt the result of a previous work on designing
an accurate boundary estimator [14]. The captured light
stripe signal in camera image, fs(x), can be modeled as
follows:

fs(x) = ((s(x) ⊗ gp(x, σp))R(x) +A(x))⊗gc(x, σc)+W (x)
(1)

where s(x) is the pattern for projector illumination, which
is a step function:

s(x) =

{

H x ≥ 0
L x < 0

,

symbol ⊗ represents a convolution operator. In Eq. (1),
the two blurring processes associated with the projector
and camera lenses are modeled as a convolution with the
respective blur kernels, gp(x, σp) and gc(x, σc). The blur ker-
nels, gp(x, σp) and gc(x, σc), are chosen to be a normalized
Gaussian function with (x, σp) and (x, σc) representing their
respective (center, variance) pairs:

gi(x, σi) =
1

σi

√
2π

e

(

−

x
2

2σ2

i

)

,

where i is p or c.
R(x) is the reflection index of the local surface at x,

R(x) ∈ [0, 1]; A(x) is the ambient light, and W (x) is the
noise of the imaging sensor.



projector camera

A
B

C

D

X1 X2 Y1 Y2 Y3 Y4

Fig. 3: The shadow in camera view. The region [Y2,Y3] corre-
sponds to the shadow [B,C].

Also the light patterns captured on the image in corre-
spondence to the respective all-bright and all-dark pattern
projections [i.e., s1(x) = H and s0(x) = L]:

f1(x) = (H ∗R(x) +A(x)) ⊗ g(x, σc) +W1(x)
f0(x) = (L ∗R(x) +A(x)) ⊗ g(x, σc) +W0(x)

Then the amount of light from the projector hitting the
local surface corresponding to x is estimated as:

fc(x) ≈
deconvlucy ((fs(x)− f0(x)) , σc)

deconvlucy ((f1(x)− f0(x)) , σc)
(H − L) (2)

where ”deconvlucy” represents the Richardson-Lucy de-
convolution operator [15][16] that we chose to use for the
computation of de-convolution.

The canonical form of light pattern, fc(x), computed by
Eq. (2) is regarded as correcting the edges of fs(x) corrupted
by R(x), as well as by A(x) and gc(x, σc), thus providing
a mean of recovering the true boundary embedded in s(x).
We estimate the boundaries of a light pattern by intersecting
the canonical form of a light pattern with that of its inverse
pattern. For details, please refer [14].

In each layer of HOC patterns, the light stripe in this
pattern shares a common boundary with the light stripe in
next pattern. Thus two consecutive patterns in the same layer
can be treated as a pattern and its inverse pattern, and then
the proposed boundary estimation method is applied to find
the accurate stripe boundaries. In our experiments, we use 16
HOC patterns and two additional black and white patterns.

2) Boundary of the Shadows in the Camera View: The
definition of the shadow in the camera view is the region in
captured image that is not reached by the projecting light, as
illustrated in Fig. 3.

The region [B,C] is not reached by the projector light, thus
in the captured image the corresponding region [Y2,Y3] is
the shadow. We need to detect the boundaries of the shadow
region which are Y2 and Y3. It is easy to do that after
removing out the shadow regions.

3) Boundary of the Shadows in the Projector View: In
the structured light imaging system, the projector can be
considered as an inverse camera (projecting light instead of
capturing light). And similar to the shadow in the camera
view, the shadow in the projector view is the region that does
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Fig. 4: The shadow in projector view. The region [X2,X3] corre-
sponds to the shadow [B,C].

not reflect the projecting light to the camera, as described in
Fig. 4.

The camera cannot see the region [B,C] which is projected
with light pattern, thus the corresponding region in projector
image [X2,X3] is the shadow in projector view. Since the
region [B,C] does not appear in the captured image, we
cannot detect the boundary X2, and X3 directly from the
captured image. In order to detect X2, X3, we need to
calculate the correspondence values, using all the patterns
from layer 1 to layer 4 [13], of pixels from Y1 to Y2 to
get the correspondence map X ∈ [X1,X4], and then the
boundaries of shadow in projector view X2, X3 is estimated
under the constraint: |X3−X2| > 1.

4) Forming Regions: After detecting all those kinds of
boundary, in each layer we define the regions which is
formed by two consecutive boundaries, as illustrated in Fig.
5. There are two maps we need to consider: the map of
boundaries in camera image and the map of boundaries in
projector image.

From captured pattern images, in each layer we can detect
all the boundaries including stripe boundaries Y1, Y4, Y5
and shadow boundaries Y2, Y3. All of these boundaries are
put in a map. Also from the captured pattern images, in
each layer we can compute the correspondence for each pixel
[13]. Along each row of the image, we search for positions,
named boundaries, where the pixel correspondence value
changes; we get the boundary of stripes X1, X2, X5 and
the boundaries of shadow X3 and X4 in projector image.
Because X1, X2, X5 are the boundaries of black and white
fringes in projector image, then corresponding positions in
camera image will be Y1, Y4, Y5 respectively.

Combining these two boundary maps we get a region map
where two consecutive boundaries enclose a region, as shown
in Fig. 4. Where A1 = Y1, A4 = Y4, A6 = Y5; and B1 =
X1, B3 = X2, B6 = X5. For the region of shadow [Y2,Y3]
in camera image, the corresponding region in the projector
image is just only one pixel, so A2 and A3 have the same
correspondence value B2. The same way for the region of
shadow [X3,X4] in projector image, the corresponding region
in camera image is only one pixel, so B4, B5 have the same
correspondence value A5.

5) Structured Light Pattern Decoding Algorithm: Accord-
ing to the design of HOC, each layer has regions with local
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correspondences. Each of these regions is divided into four
sub-regions in next layer, as illustrated in Fig. 6.

Thus we want to update the region-wise correspondences,
not pixel-wise correspondences. By doing this way we can
eliminate the outliers caused by uncertainties of the pixel-
wise correspondence at the boundaries of the regions. The
decoding process is as follows. In each layer, we detect all
the possible boundaries: stripe boundaries, camera shadow
boundaries and projector shadow boundaries. Then the re-
gions are formed from pairs of the consecutive boundaries.
The global correspondences of sub-regions in lower layer
are updated by inheriting the global correspondence of the
containing region in the upper layer plus their own local
correspondence. The inheritance is described in Fig. 7.

For example, in the layer k, the region [Y4,Y5] has the
correspondence [X4,X5]. In lower layer k+1, there are sub-
regions [a6,a7] and [a7,a8] having correspondences [b6,b7]
and [b7,b8] respectively. Thus the inherited correspondences
of the sub-regions are [X4+b6, X4+b7] and [X4+b7, X5+b8].

This procedure is repeated from the first to the last layer,
the global correspondence of the regions in the last layer
will be the output of the structured light pattern decoding
process. The whole decoding algorithm is presented in Fig.
8.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed Ray-Tracing codec has been implemented in
a light weight structured light system, namely Pico system,
which can be used for service robot applications. The system
consists of an Optoma PK301 Pico projector, a PGR Flea2
1394 digital camera mounted a TV LENS 8mm 1:1.3 and
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a computer, as illustrated in Fig. 9. The resolution of the
projector was 800x600 and that of the camera 640x480. The
position of the camera was about 13cm on the right of the
projector. The computer generates signal patterns, acquires
images, and computes depth images. Typical distance of the
structured light system from the scene is 1m, and the system
was calibrated.

B. Results

1) Qualitative Evaluation: To evaluate the qualitative per-
formance of the proposed Ray-Tracing codec, we compare
the depth image captured by Ray-Tracing codec with other
methods: HOC and Gray code inverse (Trobina’s method).
We acquired depth images from a real scene (Fig. 11) by
Ray-Tracing codec, Gray code inverse and HOC, as shown in
Fig. 12, 13 and 14 respectively. As can be seen, outliers in the
3D point cloud are significantly reduced in the result of Ray-
Tracing codec compared with HOC and Gray code inverse.
Since the brightness of the Optoma PK301 Pico projector is
50 ANSI Lumens, the signal to noise ratio is lower compared



Fig. 9: The setup of the structured light system (Pico system).

Fig. 10: The calibration block to be measured and compared.

with using other normal presentation projectors. When the
signal of pixels around the boundaries of light stripes or
of shadows is corrupted by noise/variation in reflectance,
the decoded pixel correspondences of HOC or Gray code
inverse are wrong, thus outliers in 3D data are created.
Whereas, the Ray-Tracing codec uses region based decoding
algorithm, the wrong decoding correspondences of single
pixels is eliminated, thus the 3D data of Ray-Tracing codec
contains much less outliers. We can see that the Ray-Tracing
codec contains much less outliers than others methods.

To statistically evaluate the number of outliers, we man-
ually and carefully delete the outliers from the 3D point
cloud shown in Fig. 12-14 using Rapidform software [17],
also count the number of outliers have been deleted. Table
I shows the total number of 3D points in the result of each
method and corresponding number of outliers. We can see
that the Ray-Tracing codec contains much less outliers than
others methods.

TABLE I: Number of 3D points and outliers in the results of Ray-
Tracing codec, Gray code inverse (Trobina’s method), and HOC

Total number Number of Percentage of
of 3D points outliers outliers

Ray-Tracing codec 238397 387 0.16%
Gray code inverse 290938 8779 3.02%
(Trobina’s method)

HOC 181305 5307 2.93%

2) Quantitative Evaluation: To evaluate the accuracy as
well as the effect of variation in surface reflection on the
proposed Ray-Tracing codec, Gray code inverse (Trobina’s
method), and HOC; we captured the 3D data of a face of
calibration block made from aluminum (Fig. 10), which has
the flatness-values as: standard deviation is 0.260365 µm and
max error is 1.149865 µm, by these methods and we mea-
sured the errors in the captured data. The error was defined
as the distance from the reconstructed points to the fitted
plane. As can be seen in Table II, with approximately the
same number of points, the accuracy of Ray-Tracing codec
is significantly improved compared with other methods.

TABLE II: Errors of Reconstructed 3D Data Using Ray-Tracing
codec, Gray code inverse and HOC

Standard Error max Number of
deviation of error points

(mm) (mm)
Ray-Tracing codec 0.332 3.529 27887
Gray code inverse 0.788 20.997 27888

HOC 6.870 95.434 27077

Fig. 11: The scene to be captured.

C. Compare Pico System with Kinect Sensor

Kinect sensor is the commercial version of Primesense
device [18], which is widely used recently in robotics and
computer vision communities. In this Section, we show a
comparison between Pico system endowed with Ray-Tracing
codec and Kinect sensor.

In first experiment, a Venus statue is placed about 1m in
front of the devices, as shown in Fig. 15. Pico system and
Kinect sensor captured 3D point cloud of the scene. Fig.
16 and 17 show the 3D points in different views captured
by Pico system and Kinect sensor respectively. As can been
seen, the Pico system with Ray-Tracing codec gives a clean,
dense and detailed 3D point cloud. Meanwhile the 3D point
cloud resulted by Kinect sensor is sparse, loses the details
of the object.

Fig. 15: The object to be captured.

8mm

4mm

2mm 1mm

Fig. 18: The exponential staircase. The steps are approximately
1mm, 2mm, 4mm and 8mm.



Fig. 12: The 3D point cloud of the scene captured by Ray-Tracing codec (left: front view; center: top view; right: side view).

Fig. 13: The 3D point cloud of the scene captured by Gray code inverse (Trobina’s method) (left: front view; center: top view; right: side
view).

Fig. 14: The 3D point cloud of the scene captured by HOC (left: front view; center: top view; right: side view).

Fig. 16: The 3D point cloud of the Venus statue captured by Pico system (left: front view; center: top view; right: side view).

Fig. 17: The 3D point cloud of the Venus statue captured by Kinect sensor (Trobina’s method) (left: front view; center: top view; right:
side view).



Fig. 19: The 3D point cloud of the staircase captured by Pico
system, with 45

0 view angle (top) and side view (bottom).

Fig. 20: The 3D point cloud of the staircase captured by Kinect
sensor, with 45

0 view angle (top) and side view (bottom).

In second experiment, a staircase, in which the steps are:
1mm, 2mm, 4mm and 8mm (Fig. 18), is positioned at
a distance of about 90cm from the imaging devices. The
acquired 3D point clouds of the staircase by Pico system and
Kinect sensor are shown in Fig. 19 and 20 respectively. As
can be seen in those figures, we can distinguish the bottom
stair with 1mm height in 3D point cloud of Pico system,
but we cannot even locate the position of the top stair with
8mm height in the 3D point cloud of Kinect sensor. Table
III describes the measurement accuracy of the staircase.

TABLE III: The average and standard deviation of the depth
measurement in each stair of the staircase with respect to the bottom
stair

Pico system Kinect sensor
Top stair Average depth [mm] 14.600 Cannot locate

Standard deviation [mm] 0.2640 the stair
2nd stair Average depth [mm] 6.8000 Cannot locate

Standard deviation [mm] 0.2179 the stair
3rd stair Average depth [mm] 2.9000 Cannot locate

Standard deviation [mm] 0.1891 the stair
4th stair Average depth [mm] 0.9989 Cannot locate

Standard deviation [mm] 0.1776 the stair
Bottom Average depth [mm] 0.1337 Cannot locate

stair Standard deviation [mm] 0.1074 the stair

IV. CONCLUSIONS

We have presented a new method to decode the pixel
correspondences for HOC structured light pattern in order to
improve the robustness and accuracy of structured light 3D
imaging systems. The key idea of the proposed method is to
define regions in each layer of the code with the support

of an accurate boundary estimator, and then each region
in lower layer is traced back to the containing region in
upper layer to inherit the correct correspondence information.
With better quality projectors, we can achieve more accurate
measurements, yet in a same projector-camera system, we
have shown that the Ray-Tracing codec is more robust
and accurate than other conventional methods. The results
show the improvements of the proposed Ray-Tracing codec
compared with other methods. However, the processing time
is still high, the Ray-Tracing codec is implemented on a
NVIDIA Tesla C2050 GPU and running at 3Hz, whereas
Kinect sensor outputs video at a frame rate of 30Hz. Our
future work is to improve the algorithm in order to speedup
the system.
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