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ABSTRACT 

Classification of an object under various environmental conditions 

is a challenge for developing a reliable service robot. In this work, 

we show problems of using simple Naïve Bayesian classifier and 

propose a Tree-Augmented Naïve (TAN) Bayesian Network – 
based classifier. We separate feature space into binary 

TRUE/FALSE regions which allows us to drive Bayesian inference 

prior conditional probabilities from statistical database. We go 

further using TRUE/FALSE regions to estimate expected posterior 

probabilities of each object under online specific conditions. These 
expectations are then used to select optimal feature sets under this 

environment and autonomously reconstruct Bayesian Network. 

Experimental results, validation and comparison show the 

performance of the proposed system. 

Categories and Subject Descriptors  

I.5.2 [PATTERN RECOGNITION]: Design Methodology – 

Classifier design and evaluation, Feature evaluation and selection 

General Terms  

Algorithms, Design, Reliability. 

Keywords 

3D Object Recognition System, Bayesian Network Restructuring, 

Optimal Feature set Selection, Environmental Adaptation. 

1. INTRODUCTION 
A humanoid robot is expected to survive in a typical human 

environment and perform various types of tasks that are intuitively 

easy for us as humans. While some applications, such as industrial 

robotics, permit to design a robot and explicitly program it to 
perform a specific task under specific predefined/controllable 

conditions; performance of such a robot drops dramatically with 

any minor unpredictable variation in the environment. A humanoid 

robot is expected to cope with far more major continuous variations 

in its workspace. For such application, regardless of their 
robustness, open-loop vision systems will simply fail due to their 

inflexibility. A cognitive vision system is required in which 

multiple features are merged and learning algorithms close the loop 

and allow primitive intelligence to emerge. 

2. PROBLEM STATEMENT AND 

RELATED WORK 
Classification is a process with two inputs: prior objects’ models 
and current scene measurement. Any variations or noise in any of 

these two inputs will deteriorate classification accuracy. Issues 

related to prior object’s models, such as under-sampled 

distributions, conditions in which samples are collected, untrained 

background objects, approximation of likelihoods and model 
representation can cause misclassifications. Similarly, 

Measurements far from expected models can cause 

misclassifications too. Since a robot is expected to operate in an 

uncontrollable environment, changes of this environment can drive 

feature measurement far from the trained model. Generally, causes 
of classification errors can be categorized into the following table: 

Table 1. General causes for classification errors 

Issues Details 

Features 

Uncertainties 

- Sensor Capability 

- Feature Extraction Algorithm 

- Occlusion 

- Distance, Intensity, Orientation 
- Wrong Segmentation 

- Classification using Irrelevant Feature(s) 

Approximation 

Error 

- Undersampled Training 

- Low Populated Regions of Likelihood 

- Inaccurate statistical representations of 

Model Likelihoods 

 

Charu C. Aggarwal [1] Research work assumes a measurement  
noise that follows a random pattern and tries to recover the 

measurement of training samples assuming they are inherently 

sparse in feature space. Other work such as [2], [3], [4] address the 

classification problem under training sample uncertainty. Online 

random noise in measurement, however, has been addressed very 
little in literatures in the scope of classification. We believe that 

sensor error can be modeled through a sensor supervised calibration 

and can be used to recover the measurement in both offline training 

and online acquisition. Problem of occlusion has been repeatedly 

addressed in literature as well. It is usually addressed from two 
points of view: 1) Active searching approach that moves sensor to 

a new occlusion-free perspective, such as the work presented by 

Xing Chen and James Davis [5] and Xi Chen and Sukhan Lee [6]. 

2) Passive approach that measure occlusion and prevent recognition 

from taking the wrong decision. For the scope of this work, we will 
only focus on the passive approach. Michael Boshra and Bir Bhanu 

[7] presented an approach that predict object recognit ion 
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performance under occlusion. They, however, assumed that feature 

subset of a model is uniformly distributed along object surface and, 

thus, are equally likely to be occluded given that they have the same 
size. This may not be a good assumption since segmentation may 

dictate a non-uniform distribution of surfaces that can be measured 

with acceptable certainty. Thus, it is not appropriate to assume 

occlusion is linearly proportional with amount of distortion in 

measured features. The relationship depends on the location of 
occlusion, location of features, and their spatial sizes. Assuming 

that occlusion likelihood is uniform along the surface is not true too 

since it ignores occlusion common structures. For example, an 

occlusion is mostly casted by another object placed on the same 

ground. Thus, occlusion is highly likely to occur on lower parts of 
an object surface. David Meger et al [8] presented an approach that 

localize occlusion along object surface. Features associated with 

affected regions are denied contribution to naïve Bayesian classifier 

if occlusion rate is above a hand-chosen threshold. This is a 

preventive approach that discard contaminated features. Edward 
Hsiao and Martial Hebert [9] extended LINE2D by introducing 

visibility penalty corresponding to occlusion conditional likelihood 

that is computed from a prior occlusion model and detected 

occlusion regions from scene. Even though they approximated the 

global relationship between visibility states on an object, the 
resulting occlusion conditional likelihood is very reasonable. They 

have compared two schemes of penalties and showed that it 

improved LINE2D by 3~5%. Their occluding object model is, 

however, approximated with a surrounding 3D box that causes miss 

modeling and over penalization in actual scene with freeform 
objects. We have proposed a novel approach for a cognitive 

recognition under unstructured severe occlusion in [10]. 

Variations due to differences in distance/scale, orientation and 

illumination are addressed in literatures either individually [11], 

[12], [13], or together [14]. While algorithms relying on machine 
learning and similarity measurements may produce reasonable 

results, we believe that an explicit model of effect of such variations 

on each feature can guarantee performance and avoid unsupervised 

machine learning drifts and artifacts. Thus, we adapted the 

approach of W. Jeong [15]. 

Identifying irrelevant features and discarding them is addressed in 

researches either implicitly through dimensionality reduction or 

explicitly through feature selection. Hyunsoo Kim et al [16] 

compared truncated singular value decomposition to clusters-aware 

centroid-based algorithm and generalized linear discriminant  
analysis for the classification performance of an SVM classifier.  

What is interesting is that even though the purpose of the study is 

dimensionality reduction for enhancing classification performance 

of high dimensional feature space, the results show that there are 

cases where accuracy can be degraded by dimensionality reduction. 
Authors concluded that these cases require a nonlinear 

dimensionality reduction approach. Patricia E.N. Lutu [17] used 

symmetrical uncertainty coefficient (function of entropy) to 

measure correlation between features and class correlation and 

continuously select relevant unique feature set from a sliding 
window method of stream mining. The result shows improvement 

in predictive performance of naïve Bayesian classifier. A more 

sophisticated approach, such as [18], may weight features 

according to their relevance instead of discarding irrelevant  

features completely. 

Database may also cause classification issues when number of 

training samples are not enough to build a good classifier. This 

typically occurs when dealing with a very high dimensional feature 

space. An assumption of independencies may relax the problem and 

result in appropriate classification. Yuguang Huang and Lei Li [19] 

used naïve Bayesian classifier with Poisson likelihood distribution. 

Since naïve Bayesian assumes independency of each feature, it 
performs expectedly well with under sampled data. Naïve Bayesian 

classifier overall performance, however, can only be as good as the 

worst feature. 

Low populated likelihood regions issue results from the fact that a 

feature value usually will be contained within small sparse regions  
of feature space. No matter how many samples we collect, densities 

of likelihood far from these regions will always be under-sampled. 

Decisions taken far from these regions will have a high error since 

the likelihood ratio shown in equation (1) will be at the edge of 

singularity as shown by the false 100% decision in the left of figure 
1. Feature smoothing, such as Laplace, is required to overcome this 

issue. Laplace smoothing introduces new virtual samples to the 

system to accommodate for under sampled regions and overcome 

singularities. This is simply accomplished by assuming that every 

possible outcome of an event will happen at least k number of 
times. This will lead to the elevation of likelihood distributions by 

a uniform distribution with an amplitude (e) proportional to 

selected k. since likelihoods will never be close to zero, singularity 

issue can be evaded which will lead to a more appropriate behavior 

around decision boundaries as well as on regions far from object’s 
true values as shown in [20] and [21]. 

 

 

Figure 1. Classification decision: no smoothing (left), a 

0.01 Laplace smoothing (right) 

 

 

Figure 2. Classification decision under multiple Laplace 
smoothing 

The main drawback of this solution is that it is essentially an 

approximation with a domain-specific control parameter (e). Figure 

2 illustrate the decision characteristics under various Laplace 

smoothing parameter. It’s worth noting that a very small smoothing 
tolerate a false decision at regions far from true values, while large 

smoothing may saturate weak likelihood preventing true decisions. 

Statistical representation of measured samples also inherits an 

approximation error. A polynomial of high order will probably over 

fit the likelihood, while an unsupervised Gaussian fitting may result 



in a poor model when used to represent a multimodal distribution. 

This issue, combined with low populated regions and without 

proper smoothing may lead to an awkwardly wrong decisions. With 
proper feature smoothing and feature representation, this issue can 

be evaded as shown in [22] Pekka Paalanen’s thesis 

3. PROBLEMS WITH TRADITIONAL 

NAÏVE BAYESIAN CLASSIFIER 
Naïve Bayesian classifier is classifier that assumes independency 

between all input features [23]. There have been two main 
formulation in the literature for naïve Bayesian classifier. Let’s 

assume 𝑜𝑖  is object of interest, 𝑓1~𝑓𝑛 are measured features, 

𝑃(𝑓𝑗|𝑂 = 𝑜𝑖) is conditional likelihood of feature j given that it was 

measured from object  𝑜𝑖 , and 𝑃(𝑂 = 𝑜𝑖|𝑓1~𝑓𝑛) is posterior 
probability we are interested in computing. Using Bayesian 

theorem and the assumption of independency we can write: 

𝑃(𝑂 = 𝑜𝑖|𝑓1~𝑓𝑛) =
𝑃(𝑂 = 𝑜𝑖)𝑃(𝑓1~𝑓𝑛|𝑂 = 𝑜𝑖)

𝑃(𝑓1~𝑓𝑛)

≅
𝑃(𝑂 = 𝑜𝑖) ∏ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)𝑗=1~𝑛

𝑃 (𝑓1~𝑓𝑛)
  

The first formulation commonly used assumes that denominator is 

irrelevant since it has nothing to do with the measured object. So, 

classification can be done as follows: 

𝑃(𝑂 = 𝑜𝑖|𝑓1~𝑓𝑛) ∝ 𝑃(𝑂 = 𝑜𝑖) ∏ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)

𝑗=1~𝑛

  

𝑇ℎ𝑢𝑠, 𝑜𝑏𝑗𝑒𝑐𝑡  𝑖𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑓𝑖𝑛𝑑𝑖𝑛𝑔  

𝑎𝑟𝑔𝑚𝑎𝑥𝑜𝑖
{𝑃(𝑂 = 𝑜𝑖) ∏ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)

𝑗=1~𝑛

} 

This is also known as maximum a posteriori likelihood estimate 

(MAP). The assumption that features’ probabilities have nothing to 

do with objects is not accurate. There is another way to drive a value 
of the denominator from likelihoods and prior probabilities using 

total probability theorem as follows: 

𝑃(𝑓1~𝑓𝑛) = 𝑃(𝑓1~𝑓𝑛|𝑜1)𝑃(𝑂 = 𝑜1) + 𝑃(𝑓1~𝑓𝑛|𝑜2)𝑃(𝑂 = 𝑜2)

+ ⋯ + 𝑃(𝑓1~𝑓𝑛|𝑜𝑁)𝑃(𝑂 = 𝑜𝑁 )
= 𝑃(𝑓1~𝑓𝑛|𝑜𝑖)𝑃(𝑂 = 𝑜𝑖)

+ ∑ 𝑃(𝑓1~𝑓𝑛|𝑜𝑘)𝑃(𝑂 = 𝑜𝑘)

𝑘=1~𝑁
𝑘≠𝑖

 

For conservatism, let’s assume worst case. All prior probability are 

zero except for the target object and another object that happens to 
have likelihoods that best fit the measurement: 

𝑃(𝑓1~𝑓𝑛)𝑤𝑜𝑟𝑠𝑡 = 𝑃(𝑓1~𝑓𝑛|𝑜𝑖)𝑃(𝑂 = 𝑜𝑖)

+ 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝑃(𝑓1~𝑓𝑛|𝑜𝑘)𝑃(𝑂 ≠ 𝑜𝑖)} 

 

𝑡ℎ𝑢𝑠, 𝑃(𝑂 = 𝑜𝑖|𝑓1~𝑓𝑛)𝑤𝑜𝑟𝑠𝑡

=
𝑃(𝑂 = 𝑜𝑖)𝑃(𝑓1~𝑓𝑛|𝑜𝑖)

𝑃(𝑓1~𝑓𝑛|𝑜𝑖)𝑃(𝑂 = 𝑜𝑖) + 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝑃(𝑓1~𝑓𝑛|𝑜𝑘)𝑃(𝑂 ≠ 𝑜𝑖)}

=
1

1 +
𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝑃(𝑓1~𝑓𝑛|𝑜𝑘)𝑃(𝑂 ≠ 𝑜𝑖)}

𝑃(𝑓1~𝑓𝑛|𝑜𝑖)𝑃(𝑂 = 𝑜𝑖)

       

By adding laplace smoothing, assuming independencies and no 

prior knowledge (𝑃(𝑂 = 𝑜𝑖) = 1 − 𝑃(𝑂 ≠ 𝑜𝑖) = 0.5) 

𝑃(𝑂 = 𝑜𝑖|𝑓1~𝑓𝑛)𝑤𝑜𝑟𝑠𝑡

=
1

1 +
𝑎𝑟𝑔𝑚𝑎𝑥𝑘{∏ (𝑃(𝑓𝑗|𝑂 ≠ 𝑜𝑖) + 𝜀′)𝑗=1~𝑛 }

∏ (𝑃(𝑓𝑗|𝑂 = 𝑜𝑖) + 𝜀′)𝑗=1~𝑛

 

≅   
1

1 +
𝜀 + 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{∏ 𝑃(𝑓𝑗|𝑂 ≠ 𝑜𝑖)𝑗=1~𝑛 }

𝜀 + ∏ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)𝑗=1~𝑛

        (1) 

The above equation is commonly used as one of the best 

interpretation of naïve Bayesian classifier. It is a powerful formula 
that can produce very reasonable results as shown in [24]. It has, 

however, many drawback such as: 

- Feature smoothing is a necessity  

- Cascaded multiplication of likelihoods may not be tractable 

computationally without hitting zero. (log cannot be used 
when computing posterior probabilities) 

- Not scalable, performance drop with the increase of number 

of features. It accumulates their uncertainties and becomes  

computationally impossible to keep track of cascaded 

multiplication of likelihoods 

- Very sensitive to irrelevant features 

- Ignores conditional relationship of individual features with 

measured objects. Once a feature likelihood hits zero, no 

matter how uncorrelated it is to measured object, it dictates 

every other feature no matter how strongly correlated they 

may be. 

That been said, most of these weaknesses can be evaded by simply 

applying a feature selection stage before applying naïve Bayesian. 

Many researches, for efficient feature selection, have been 

conducted in pair with naïve Bayesian. These approaches, however, 

still ignore the risk of having a poor feature dictating the decision. 
For that purpose, researchers started migrating ideas from Bayesian 

network and tree-augmented naïve Bayesian network is widely 

adapted as the natural extension of naïve Bayesian classifier [25] 

4. PROPOSED ADAPTIVE BAYESIAN 

NETWORK FRAMEWORK 

4.1 Bayesian Network Inferences Model 
In a Bayesian Network, a probability can be inferred in any 

direction once a node is instantiated [26]. In a classification 

problem, we are interested in backward (diagnostic) inference. We 
may drive backward inference of a Bayesian Network using total 

probability theorem as follows: 

𝑃(𝑂 = 𝑜𝑖) = 𝑃(𝑂 = 𝑜𝑖|𝑓1, 𝑓2, 𝑓3 , 𝑓4)𝑃(𝑓1, 𝑓2, 𝑓3, 𝑓4)

+ 𝑃(𝑂 = 𝑜𝑖|𝑓1
̅, 𝑓2, 𝑓3 , 𝑓4)𝑃(𝑓1

̅, 𝑓2, 𝑓3 , 𝑓4)

+ 𝑃(𝑂 = 𝑜𝑖|𝑓1, 𝑓2̅, 𝑓3 , 𝑓4)𝑃(𝑓1, 𝑓2̅, 𝑓3 , 𝑓4) + ⋯

+ 𝑃(𝑂 = 𝑜𝑖|𝑓1
̅, 𝑓2

̅, 𝑓3
̅ , 𝑓4

̅)𝑃(𝑓1
̅, 𝑓2

̅, 𝑓3
̅ , 𝑓4

̅)    (4) 

The above equation consists of two terms: probability of a feature 

measurement to be true or false, which can be interpreted as a 
likelihood, and a prior knowledge of the causal effect of an object 

on the feature set, represented by the terms: 

𝑃(𝑂 = 𝑜𝑖|𝑓1, 𝑓2, 𝑓3, 𝑓4), 𝑃(𝑂 = 𝑜𝑖|𝑓1̅, 𝑓2, 𝑓3 , 𝑓4), …  𝑃(𝑂

= 𝑜𝑖|𝑓1̅, 𝑓2̅ , 𝑓3̅, 𝑓4̅) 

These prior knowledge can be computed using the same 
formulation of naïve Bayesian classifier (equation 1). The main 

difference between these priori knowledge and the posterior 

probabilities computed by traditional naïve Bayesian classifier 



(despite their similar formulas) is in the way likelihood 

probabilities are obtained. In a traditional naïve Bayesian classifier,  

likelihood probabilities are computed for an actual measurement  
from the scene. For our prior knowledge, however, we don’t know 

what the measurement will turn out to be yet. So, likelihood 

probability is computed according to our database and expectation 

of what these measurement should look like under current 

environment. This will be discussed in detail after the introduction 
of TRUE region (section 4.3). A Bayesian conditional probability 

table is formed from these prior knowledge. This table represent 

our belief of the cause-effect relationship between an object and the 

set of measureable features used to recognize it. 

Table 2. Bayesian conditional probability table 

𝑓1  𝑓2  ... 𝑓𝑛  𝑜1 𝑜2 ... 𝑜𝑁 

False False ... False 𝑃(𝑂 = 𝑜1 |𝑓1̅ , 𝑓2̅ , … ,𝑓𝑛̅ ) 𝑃(𝑂 = 𝑜2|𝑓1̅ , 𝑓2̅ , … , 𝑓𝑛̅ ) ... 𝑃 (𝑂 = 𝑜𝑁 |𝑓1̅ , 𝑓2̅ , … , 𝑓𝑛̅ ) 

True False ... False 𝑃(𝑂 = 𝑜1 |𝑓1 , 𝑓2̅ , … ,𝑓𝑛̅ ) 𝑃(𝑂 = 𝑜2|𝑓1 , 𝑓2̅ , … , 𝑓𝑛̅ ) ... 𝑃 (𝑂 = 𝑜𝑁 |𝑓1 , 𝑓2̅ , … , 𝑓𝑛̅ ) 

... ... ... ... ... ... ... ... 

True True ... True 𝑃(𝑂 = 𝑜1 |𝑓1 , 𝑓2 , … ,𝑓𝑛 )  𝑃(𝑂 = 𝑜2|𝑓1 , 𝑓2 , … , 𝑓𝑛 ) ... 𝑃(𝑂 = 𝑜𝑁 |𝑓1 , 𝑓2 , … , 𝑓𝑛 )  

 

Since Network graph along with this table represent explicitly our 

knowledge of an object, they may be defined manually without any 

loss of generality. However, for the sake of robustness, we will 
present an approach to drive the values of this table from statistical 

likelihood representations of the features and will use this to update 

the graph autonomously during online acquisition. 

While this inference model is general, we would call it an “AND” 

inference. We will introduce another way to infer independent 
features using “OR” inference. It is intuitive for human brain to 

think of evidences in terms of AND/OR relationships. While a 

group of evidences may infer the existence of an object, they are as 

good as their weakest evidence. Thus, a more reliable model would 

be to incorporate a set of various evidence groups. If a bad evidence 
corrupted a decision of one group, other groups may still survive 

and dictate the correct final decision. We will refer to each group 

as a “Sufficient Condition” that is composed from a set of features 

in a typical Bayesian network with a final probability inference of 

AND. An object classification may result from multiple of these 
sufficient conditions. Thus, we combine the results of these  

 

Figure 3.  An example of an evidence structure 

branches using OR inference and we refer to this framework as 

“Evidences Structure” (figure 3). In this paper, we will assume 

complete indecencies of features among each sufficient condition 
for simplicity. The way we define “OR” inference is by a weighted 

voting scheme. If an object exist in a scene, branches of sufficient 

conditions should infer high probability  if their reliability is high. 

Thus by allowing a weighted voting scheme, we can simply avoid 

noisy or poor feature measurement. This is simply done as follows: 

𝑃(𝑂 = 𝑜𝑖)𝑠𝑒𝑡1 𝑂𝑅 𝑃(𝑂 = 𝑜𝑖)𝑠𝑒𝑡2

=
𝑃(𝑂 = 𝐴|𝑓𝑖 ∈ 𝑠𝑒𝑡1)

𝑃(𝑂 = 𝐴|𝑓𝑖 ∈ 𝑠𝑒𝑡1) + 𝑃(𝑂 = 𝐴|𝑓𝑗 ∈ 𝑠𝑒𝑡2)
𝑃(𝑂 = 𝑜𝑖)𝑠𝑒𝑡1

+
𝑃(𝑂 = 𝐴|𝑓𝑗 ∈ 𝑠𝑒𝑡2)

𝑃(𝑂 = 𝐴|𝑓𝑖 ∈ 𝑠𝑒𝑡1) + 𝑃(𝑂 = 𝐴|𝑓𝑗 ∈ 𝑠𝑒𝑡2)
𝑃(𝑂 = 𝑜𝑖)𝑠𝑒𝑡2 

Where 𝑃(𝑂 = 𝐴|𝑓𝑗 ∈ 𝑠𝑒𝑡2) represents reliability of target object 

to be detected using sufficient condition of feature set 2. This 

reliability is updated online according to environmental changes 

as will be shown in section 4.5. 

4.2 TRUE/FALSE Likelihood Regions 
One major problem in using a knowledge-based model, such as 

Bayesian network, is the way its parameters are obtained. In the 
early work on Bayesian network classifier, this issue was 

overlooked and heuristic offline coefficients were given to the 

network resulting in poor inferences. Since we introduced various 

ways to adapt and update the conditional likelihood distributions in 

[6], [7], [15], [27], we can estimate the expected likelihood 
distribution of a feature given an object. We would like to use this 

knowledge to estimate the expected posterior probabilities, use 

them to select optimal features sets, restructure the Bayesian 

network, drive the inference coefficients of the Bayesian network 

and compute the reliabilities of each sufficient condition for OR 
inferences. In order to do that, we define TRUE/FALSE regions as 

labels used to divide feature space into fixed binary tuples. Using 

this notion, we can estimate the effect of a feature on decision. The 

more likelihood of an object within TRUE region with respect to 

other objects, the more this feature is effective to identify that 
object, and vice versa. In order to keep the consistency of our 

definitions, we used this notion to measure features’ evidence 

probabilities given a particular measurement. This is done through 

a sigmoid natural distribution within fixed TRUE regions. There 

can be many ways to obtain boundaries of TRUE/FALSE regions. 
Since they represent ground truth of a measurement, ideally, they 

should be defined by the manufacturer of the object of interest. For 

example, when a factory defines the thickness of a smartphone as 

9mm with tolerance of 1mm, TRUE region can be defined from 

8~10mm and FALSE region is everywhere else. In our work, 
however, we use statistical representation of feature likelihood 

gathered in the database to fix TRUE/FALSE regions. 

4.3 Estimation of Bayesian Conditional 

Probabilities Table 
Now, since we have introduced TRUE region, we may propose a 

statistical method for obtaining Bayesian table coefficients.  To do 
that, we may use the same derivation of naïve Bayesian classifier.  

However, there’s a small important difference. In naïve classifier,  

the likelihoods probability 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖) is computed according to 

features’ evidence measurement. In here, this probability should 

only be driven from prior information. And since we have defined 

TRUE and FALSE regions, we may redefine it 

as 𝑃(𝑓𝑗 ∈ 𝑇𝑅𝑈𝐸|𝑂 = 𝑜𝑖): 

𝑃(𝑓𝑗 ∈ 𝑇𝑅𝑈𝐸|𝑂 = 𝑜𝑖) = ∫ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)

𝑇𝑅𝑈𝐸

= 1 − ∫ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)

𝐹𝐴𝐿𝑆𝐸

 



Where 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)  represents our updated feature conditional 

likelihood density distribution. Equation 3 can be used here with 
little modification as follows: 

𝑃(𝑂 = 𝑜𝑖|𝑓𝑗 , 𝑓𝑘̅)
𝑤𝑜𝑟𝑠𝑡

=
1

1 +
𝜀 + 𝑎𝑟𝑔𝑚𝑎𝑥 {(∏ ∫ 𝑃(𝑓𝑗|𝑂 ≠ 𝑜𝑖)𝑇𝑅𝑈𝐸𝑗 ) (∏ ∫ 𝑃(𝑓𝑘|𝑂 ≠ 𝑜𝑖)𝐹𝐴𝐿𝑆𝐸𝑘 )}

𝜀 + (∏ ∫ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)𝑇𝑅𝑈𝐸𝑗 ) (∏ ∫ 𝑃(𝑓𝑘|𝑂 = 𝑜𝑖)𝐹𝐴𝐿𝑆𝐸𝑘 )

  

Computationally, we use Abramowitz and Stegun approximation 

of error function to compute the integration of likelihood pdf. 
Figure 4 illustrate the idea of exploiting pre-defined TRUE/FALSE 

regions to drive Bayesian network coefficients statistically, which 

is a major contribution to this work. 

 

Figure 4.  Illustration of using TRUE region to determine 

feature’s strength 

4.4 Estimation of Expected Posterior 

Probabilities and Features Discrimination 

Strengths Table 
In section 4.3 we compute a conditional probability used in 
Bayesian network inference. This coefficient may also be 

interpreted as an estimation of the expected posterior probability of 

finding the object under the worst case, given a set of successful 

and failure feature set. By worst case, we mean that another 

conditional term is assumed, that is, the negative object is the 
closest object in feature description to the measurement. Hence the 

argmax operator in the formula. In this section, we are not only 

interested in the worst case, but also in every possible case. And we 

would like to study the effect of each feature separately. Thus, we 

would like to compute: 

𝑃(𝑂 = 𝑜𝑖|𝑓𝑗, 𝑂 = 𝑜𝑟) =
1

1 +
𝜀 + ∫ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑟)

𝑇𝑅𝑈𝐸

𝜀 + ∫ 𝑃(𝑓𝑗|𝑂 = 𝑜𝑖)
𝑇𝑅𝑈𝐸

      (6)         

That is, the estimated expectation of posterior probability of finding 

object 𝑜𝑖 given that we are only using feature 𝑓𝑗, measurement of 

feature 𝑓𝑗 will come true, and that the only other object we are 

comparing with is 𝑜𝑟. Now by computing this for every possible 

case, we can form the following expected posterior probabilities, 

which we can also be interpret as estimated features discrimination 

strengths, for target object: 

Table 3. Estimated Features Discrimination strengths for 

Target Object 𝒐𝒊 

F
ea

tu
re

s 

𝑜1 𝑜2 … 𝑜𝑁 

𝑓1 𝑃(𝑂 = 𝑜𝑖|𝑓1, 𝑂̅ = 𝑜1)  𝑃(𝑂 = 𝑜𝑖|𝑓1, 𝑂̅ = 𝑜2) … 𝑃(𝑂 = 𝑜𝑖|𝑓1, 𝑂̅ = 𝑜𝑁) 

𝑓2 𝑃(𝑂 = 𝑜𝑖|𝑓2, 𝑂̅ = 𝑜1) 𝑃(𝑂 = 𝑜𝑖|𝑓2, 𝑂̅ = 𝑜2) … 𝑃(𝑂 = 𝑜𝑖|𝑓2, 𝑂̅ = 𝑜𝑁) 

… … … … … 

𝑓𝑛 𝑃(𝑂 = 𝑜𝑖|𝑓𝑛, 𝑂̅ = 𝑜1) 𝑃(𝑂 = 𝑜𝑖|𝑓𝑛, 𝑂̅ = 𝑜2) … 𝑃(𝑂 = 𝑜𝑖|𝑓𝑛, 𝑂̅ = 𝑜𝑁) 

 

4.5 Estimation of Sufficient Condition 

Reliability 
Using the above table we can estimate the reliability of a single 

feature using total probability theorem as follows: 

𝑃(𝑂 = 𝐴|𝑓𝑗) = ∑ 𝑃(𝑂 = 𝐴|𝑓𝑗 , 𝑂 = 𝑜𝑖)𝑃(𝑂 = 𝑜𝑖)

𝑖=1~𝑁
𝑖≠𝐴

 

Now, let’s assume a feature set is determined. We are interested in 

finding this feature set reliability. Using Naïve Bayesian 

formulation discussed before: 

𝑃(𝑂 = 𝐴|𝑓1, 𝑓2 , 𝑓3, … , 𝑓𝑛) =
1

1 +
𝑃(𝑓1, 𝑓2 , 𝑓3, … , 𝑓𝑛|𝑂 ≠ 𝐴)

𝑃(𝑓1, 𝑓2 , 𝑓3, … , 𝑓𝑛|𝑂 = 𝐴)

=
1

1 + ∏
𝑃(𝑓𝑖|𝑂 ≠ 𝐴)

𝑃(𝑓𝑖|𝑂 = 𝐴)𝑖=1:𝑛

 

Now single feature reliability can be formulated using naïve 

Bayesian too as follows: 

𝑃(𝑂 = 𝐴|𝑓𝑗) =
1

1 +
𝑃(𝑓𝑗|𝑂 ≠ 𝐴)

𝑃(𝑓𝑗|𝑂 = 𝐴)

 

𝑃(𝑓𝑗|𝑂 ≠ 𝐴)

𝑃(𝑓𝑗|𝑂 = 𝐴)
=

1

𝑃(𝑂 = 𝐴|𝑓𝑗)
− 1 

So, we can estimate the reliability of the feature set as follows: 

𝑃(𝑂 = 𝐴|𝑓1, 𝑓2 , 𝑓3, … , 𝑓𝑛) =
1

1 + ∏ (
1

𝑃(𝑂 = 𝐴|𝑓𝑖)
− 1)𝑖=1:𝑛

 

4.6 Optimal Features Sets Selection and 

Evidence Structure Update 
By determining a minimum required discrimination strength 

between target object and other objects, we use an iterative 

algorithm to keep accumulating next-best-feature in optimal 

feature-set bag until they mutually meet the required discrimination 
criteria. This algorithm can find the optimal feature (if exist) set for 

discriminating a target object given current environmental 

variations. We, however, are interested in finding multiple feature 

sets to form an evidence structure of multiple sufficient conditions. 

So, after finding the optimal feature set, we deliberately reduce 
discrimination strength of each feature and rerun the algorithm to 



find second, third, … best optimal features sets as shown in figure 

5. The overall Tree Augmented Naïve Bayesian Network is formed 

by simply putting selected ANDs through an OR to take a decision. 

 

Figure 5.  Flowchart for selection of multiple sufficient 

conditions 

Finally, the above system has been implemented with the 
following overall flowchart: 

 

Figure 6.  Overall system flowchart 

5. EVALUATION AND EXPERIMENTAL 

RESULTS 
We have trained our system on 10 different objects, each with 

multiple alignments (pitch/yaw), each with 16 orientation (roll) as 
shown in figure 7. For the sake of comparison, we have developed 

an adaptive Naïve Bayesian classifier [27]. An object (milk box) is 

chosen as a target object. Experimental environment consists of a 

table with a sliding platform that allows an object to slide from 

50cm to 3m distance away from sensor. An Asus xtion pro RGBD 
sensor, and a Bumblebee2 stereo camera are used for data 

acquisition. For the sake of illumination experiments, two levels  

(bright: lights on, dark: lights off) were used. Two experimental 

results will be presented: 1) Qualitative: will show how proposed  

 

Figure 7.  Database used in evaluation 

system behaves under various conditions. 2) Statistical evaluation 

and comparison with adaptive Naïve Bayesian classifier. 

5.1 Experiments for Adaptability 
At first, target object (milk box) is placed in front of the camera 

[28] and figure 8. Recognition system used octree for segmentation 

and found out there’s a candidate object at a distance of 73cm that 
is about 32% bright and has no occlusion. System updates the 

likelihoods distributions of every feature of every object in the 

database, then system construct discrimination strength table and 

decided that at these conditions, 80% chances of discrimination can 

be achieved. It then picks up optimal feature set (height, middle 
width, and SIFT) and constructed their conditional probability 

table. System also computes the reliability associated with this 

sufficient condition (99.7%) thus, final decision has inherited only 

0.3% uncertainty. Finally, the system went ahead and measured 

these 3 features and computed their probability to match the target 
object and inferred their likelihoods throughout the evidence 

 

Figure 8.  Target object at optimum conditions 

structure and concluded that this candidate is indeed the target 

object with 97%. These steps took the system 187ms to compute. 

100 cycles were computed and shows that mean probability is 95% 
with standard deviation of 3%. The target object is then gradually 

moved away from the sensor and continuous readings were made 

along the way as shown in figure 9. System detects the distance 

changes every frame and updates the likelihoods distributions 

accordingly. System also reduces chances of discriminations, 
allowing itself to pick up 5 different sufficient conditions. It’s worth 

noticing that even when features measurement fails, final decision 

probability is about 50% with very high uncertainty. There are two 

 

Figure 9. Target object at very far distance (271cm) 



more things to notice in figure 9: 1) In “Interpretation Summary” 

chart, probabilities of this candidate being other object from 

database (not milkbox) are increased to about 50% since system is 
not really certain what this object is at this distance. 2) “history” 

chart shows the last 200 cycles’ probabilities. It shows the decline 

of probability along with distance. As expected, the decline shows 

a characteristic of an exponential function responding the 

exponential modeling of the distance variations used to update 
features likelihoods distributions. On the other hand, Naïve 

Bayesian classifier could not adapt to this extreme condition. 

Measurement of top width, top shape, and middle width were 

contaminated. The resulting negative to positive likelihood ratio 

exceeded the classification boundary and the object was falsely 
classified as a yellow cup. The opposite is also shown in figure 10. 

Another non-target object (Pringles) is placed at far distance and 

gradually moved closer to the camera. As expected, final 

probability is reduced from about 50% to 0% while decision 

uncertainty vanishes.  

 

Figure 10.  Non-target object at far distance (272cm. left) and 

close distance (92cm. right) 

 

Figure 11.  Effect of Illumination intensity on final decision. 

Non-target object / normal light: decision is 0% with 0.3% 

uncertainty. Non-target object / dark condition: decision 
becomes 25% with 48% uncertainty. Target object / normal 

light: decision is 92% with 0.1% uncertainty. Target object / 

dark condition: decision becomes 59% with 34% uncertainty. 

Similarly for intensity, when environment becomes too dark or too 

bright, decision uncertainty increases and final probability becomes 
closer and closer to 50% as shown in figure 11. 

5.2 Evaluation of Performance 
A 100 sample per object per pose per orientation is collected to 
construct the database. This database is used for both adaptive 

Naïve Bayesian classifier and proposed system. A 1,000 

measurement of each object at various environmental condition is 

collected. Table 4 states the result. Figure 12 shows a comparison 

between 3 systems: non-adaptive Naïve Bayesian classifier, 
adaptive Naïve Bayesian classifier, and proposed adaptive Tree-

Augmented Naïve Bayesian Network under various distances. The 

results obtained from 120~170cm shows that proposed system 

decided that distance is not sufficient for decision and computed a  

Table 4. Validation result and comparison 
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60 50% 0% 1 0% 83% 0% 0% 0% 0% 99% 0% 0.4% 92% 

100 50% 0% 1 0% 28% 0% 0% 0% 0% 97% 0% 6% 85% 

180 50% 0% 1 0% 100% 12% 34% 8% 12% 98% 1% 87% 54% 

280 50% 0% 1 0% 100% 11% 57% 23% 72% 41% 2% 96% 53% 

100 
10% 0% 1 0% 100% 0% 0% 0% 0% 

100

% 
2% 91% 

52% 

100 90% 0% 1 0% 100% 0% 0% 0% 0% 99% 1% 89% 54% 

100 50% 10% 1 0% 43% 3% 8% 3% 6% 95% 3% 1% 90% 

100 50% 40% 1 0% 87% 6% 87% 2% 83% 77% 5% 82% 55% 

100 50% 0% 2 0% 66% 16% 0% 15% 0% 98% 12% 0% 94% 

100 50% 0% 3 0% 43% 0% 100% 0% 100% 30% 0% 17% 69% 

 

 

Figure 12.  Comparison of 3 systems under various distances 

near 50% probability. By providing better environmental 

modelling, this behavior can be adjusted. It’s worth noting that the 

main achievement the proposed system has over other systems is 

the very low false positive rate under very poor conditions. This is 

a result of conservatively fixing the TRUE/FALSE region 
definition as discussed in 4.2. As mentioned in related work, other 

approaches relying on machine learning are more aggressive 

resulting in higher false positive rates. It’s worth investigating of 

setting TRUE/FALSE regions free to follow peaks in multimodal 

likelihood distribution and the ramifications of this on the final 
results compared to current proposed fixed regions system results. 

6. CONCLUSION 
We have presented in this work the problems in classifications as 
well as other researchers’ efforts to overcome these problems. 

Since we developed a Naïve Bayesian classifier, we showed the 

problems associated with this approach and introduced Bayesian 

Network approach. We addressed the problem of environmental 

changes by modeling the characteristics of environmental 
parameters on the likelihood of each feature. We introduced a new 

probability inference operator “OR” and defined TRUE/FALSE 

regions in feature’s space. We have also addressed the problems of 

obtaining network inference parameters and network structure from 
statistical dataset and formulated probabilistic expressions for 

estimating expected posterior probability and feature information 



gain under an environmental condition. Finally, we have shown the 

result of the system under various environmental situations and 

validated and compared the results with other non-structural 
classifier. 
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